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Classical Multiscale Analysis

• Wavelets: Enormous impact

– Theory

– Applications

– Many success stories

• Deep understanding of the fact that wavelets are not good for all purposes

• Consequent constructions of new systems lying beyond wavelets

Overview

• Other multiscale constructions

• Problems classical multiscale ideas do not address effectively
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Fourier Analysis

• Diagonal representation of shift-invariant linear transformations; e.g.
solution operator to the heat equation

∂tu = a2∆u

Fourier, Théorie Analytique de la Chaleur, 1812.

• Truncated Fourier series provide very good approximations of smooth
functions

‖f − Sn(f)‖L2 ≤ C · n−k,

if f ∈ Ck.
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Limitations of Fourier Analysis

• Does not provide any sparse decomposition of differential equations with
variable coefficients (sinusoids are no longer eigenfunctions)

• Provides poor representations of discontinuous objects (Gibbs
phenomenon)
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Wavelet Analysis

• Almost eigenfunctions of differential operators

(Lf)(x) = a(x)∂xf(x)

• Sparse representations of piecewise smooth functions
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Wavelets and Piecewise Smooth Objects
• 1-dimensional example:

g(t) = 1{t>t0}e
−(t−t0)

2

.

• Fourier series:

g(t) =
∑

cke
ikt

Fourier coefficients have slow decay:

|c|(n) ≥ c · 1/n.

• Wavelet series:

g(t) =
∑

θλψλ(t)

Wavelet coefficients have fast decay:

|θ|(n) ≤ c · (1/n)r for any r > 0.

as if the object were non-singular
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’Wavelets and Operators’

Calderòn-Zygmund Operator

(Kf)(x) =
∫
K(x, y)f(y) dy

• K singular along the diagonal

• K smooth away from the diagonal

• Sparse representation in wavelet bases (Calderòn, Meyer, etc.)

• Applications to numerical analysis and scientific computing (Beylkin,
Coifman, Rokhlin)
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Our Viewpoint

• Sparse representations of point-singularities

• Sparse representation of certain matrices

• Simultaneously

• Applications

– Approximation theory

– Data compression

– Statistical estimation

– Scientific computing

• More importantly: new mathematical architecture where information is
organized by scale and location
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New Challenges

• Intermittency in higher-dimensions

• Evolution problems

• CHA has not addressed these problems.
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Agenda

• Limitations of existing image representations

• Curvelets: geometry and tilings in Phase-Space

• Representation of functions, signals

• Representation of operators, matrices
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Three Anomalies

• Inefficiency of Existing Image Representations

• Limitations of Existing Pyramid Schemes

• Limitations of Existing Scaling Concepts
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I: Inefficient Image Representations

Edge Model: Object f(x1, x2) with discontinuity along generic C2 smooth
curve; smooth elsewhere.

Fourier is awful

Best m-term trigonometric approximation f̃m

‖f − f̃m‖2
2 � m−1/2, m → ∞

Wavelets are bad

Best m-term approximation by wavelets:

‖f − f̃m‖2
2 � m−1, m → ∞
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Optimal Behavior

There is a ‘dictionary’ of ‘atoms’ with best m-term approximant f̃m

‖f − f̃m‖2
2 � m−2, m → ∞

• No basis can do better than this.

• No depth-search limited dictionary can do better.

• No pre-existing basis does anything near this well.
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(a) Wavelets (b) Triangulations
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II. Limitations of Existing Pyramids

Canonical Pyramid Ideas (1980-present)

• Laplacian Pyramid (Adelson/Burt)

• Orthonormal Wavelet Pyramid (Mallat/Meyer)

• Steerable Pyramid (Adelson/Heeger/Simoncelli)

• Multiwavelets (Alpert/Beylkin/Coifman/Rokhlin)

Shared features

• Elements at dyadic scales/locations

• FIXED Number of elements at each scale/location
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Wavelet Pyramid
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Limitations of Existing Scaling Concepts

Traditional Scaling

fa(x1, x2) = f(ax1, ax2), a > 0.

Curves exhibit different kinds of scaling

• Anisotropic

• Locally Adaptive

If f(x1, x2) = 1{y≥x2} then

fa(x1, x2) = f(a · x1, a
2x2)

In Harmonic Analysis called Parabolic Scaling.
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x2

x4

Identical Copies of Planar Curve

Fine Scale
Rectangle

Figure 1: Curves are Invariant under Anisotropic Scaling
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Curvelets

C. and Guo, 2002.

New multiscale pyramid:

• Multiscale

• Multi-orientations

• Parabolic (anisotropy) scaling

width ≈ length2

Earlier construction, C. and Donoho (2000)
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Philosophy (Slightly Inaccurate)

• Start with a waveform ϕ(x) = ϕ(x1, x2).

– oscillatory in x1

– lowpass in x2

• Parabolic rescaling

|Dj|ϕ(Djx) = 23j/4ϕ(2jx1, 2j/2x2), Dj =

2j 0

0 2j/2

 , j ≥ 0

• Rotation (scale dependent)

23j/4ϕ(DjRθj`x), θj` = 2π · `2−bj/2c

• Translation (oriented Cartesian grid with spacing 2−j × 2−j/2);

23j/4ϕ(DjRθj`x− k), k ∈ Z2
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    Parabolic 
         Scaling

2
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2
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2
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Curvelet Construction, I

Decomposition in space and angle

• ‘Orthonormal’ partition of unity (scale): smooth pair of windows (w0, w1)

w2
0(r) +

∞∑
j=0

w2
1(2

−jr) = 1, r > 0.

• ‘Orthonormal’ partition of unity (angle):

∞∑
`=−∞

v2(t− `) = 1, t ∈ R.

• For each pair J = (j, `), define the two-dimensional window

WJ(ξ) = w1(2−j|ξ|) · v(2bj/2c(θ − θj,`)), θj,` = π · ` · 2−bj/2c.

Note

Wj,`(ξ) = Wj,0(Rθj,`
ξ)
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• WJ is an orthonormal partition of unity∑
J

W 2
J (ξ) = 1.

Interpretation

• Divide frequency domain into annuli |x| ∈ [2j, 2j+1)

• Subdivide Annuli into wedges. Split every other scale.

• Oriented local cosines on wedges
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Partition: Frequency-side Picture

2

2

j/2

j
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Curvelet Construction, II

Local bases

• Fix scale/angle pair (j, `)

suppWj,` ⊂ Dj,` = R−1
θj,`
Dj,0

where Dj,0 is a rectangle of sidelength 2π2j × 2π2j/2, say.

• Rectangular grid Λj of step-size 2−j × 2−j/2

Λj = {k : k = (k12−j, k22−j/2), k1, k2 ∈ Z}

• Local Fourier basis of L2(Dj,0)

ej,0,k(ξ) =
1

2π23j/4
eikξ, k ∈ Λj

and likewise local Fourier basis of L2(Dj,`)

ej,`,k = ej,0,k(Rθj,`
ξ)
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• Curvelets (frequency-domain definition)

ϕ̂j,`,k(ξ) = Wj,0(Rθj,`ξ)ej,0,k(Rθj,`ξ)
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Properties
• Reproducing formula

f =
∑
J,k

〈f, ϕJ,k〉ϕJ,k

Why? Let g be the RHS and apply Parseval

ĝ =
∑
J,k

〈f̂ , ϕ̂J,k〉ϕ̂J,k

=
∑
J,k

〈f̂ ,WJeJ,k〉WJeJ,k

=
∑
J

WJ

∑
k

〈f̂WJ , eJ,k〉eJ,k

=
∑
J

f̂WJWJ = f̂
∑
J

W 2
J = f̂

Conclusion ĝ = f̂ and, therefore, f = g.

• Parseval relation (similar argument)

‖f‖2 =
∑
J,k

|〈f, ϕJ,k〉|2
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Curvelet: Space-side Viewpoint

In the frequency domain

ϕ̂j,0,k(ξ) =
2−3j/4

2π
Wj,0(ξ)ei〈k,ξ〉, k ∈ Λj

In the spatial domain

ϕj,0,k(x) = 23j/4ϕj(x− k), Wj,0 = 2πϕ̂j

and more generally

ϕj,`,k(x) = 23j/4ϕj(Rθj,`
(x−R−1

θj,`
k)),

All curvelets at a given scale are obtained by translating and rotating a single
‘mother curvelet.’
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Further Properties

• Tight frame

f =
∑
j,`,k

〈f, ϕj,`,k〉ϕj,`,k ||f ||22 =
∑
j,`,k

〈f, ϕj,`,k〉2

• Geometric Pyramid structure

– Dyadic scale

– Dyadic location

– Direction

• New tiling of phase space
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• Needle-shaped

• Scaling laws

– length ∼ 2−j/2

– width ∼ 2−j

width ∼ length2

– #Directions = 2bj/2c

– Doubles angular resolution at every other scale

• Unprecedented combination
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Second Dyadic Decomposition

• Fefferman (70’s), boundedness of Riesz spherical means

• Stein, and Seeger, Sogge and Stein (90’s), Lp boundedness of Fourier
Integral Operators.

• Smith (90’s), atomic decomposition of Fourier Integral Operators.
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Digital Curvelets
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Source: DCTvUSFFT (Digital Curvelet Transform via USFFT’s), C. and Donoho (2004).
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Digital Curvelets: Frequency Localization
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Source: DCTvUSFFT (Digital Curvelet Transform via USFFT’s), C. and Donoho (2004).
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Digital Curvelets: : Frequency Localization
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Source: DCTvUSFFT (Digital Curvelet Transform via USFFT’s), C. and Donoho (2004).
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Curvelets and Edges
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Optimality

• Suppose f is smooth except for discontinuity on C2 curve

• Curvelet m-term approximations, naive thresholding

‖f − fcurve
m ‖2

2 ≤ Cm−2(logm)3

• Near-optimal rate of m-term approximation (wavelets ∼ m−1).
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Idea of the Proof I

f(x,y)

∆ s

Edge fragment

Coefficient ~ 0

-sScale   2

Decomposition of a Subband
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Idea of the Proof II

Scale   2
-s

Frequency   2
s

Microlocal behavior
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Edge Fragments
Parabolic edge
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Curvelets and Warpings

C2 change of coordinates preserves sparsity (C. 2002).

• Let ϕ : R2 → R2 be a one to one C2 function such that ‖Jϕ‖∞ is
bounded away from zero and infinity.

• Curvelet expansion

f =
∑
µ

θµ(f)γµ, θµ(f) = 〈f, γµ〉

• Likewise,

f ◦ ϕ =
∑
µ

θµ(f ◦ ϕ)γµ

The coefficient sequences of f and f ◦ ϕ are equally sparse.

Theorem 1 Then, for each p > 2/3, we have

‖θ(f ◦ ϕ)‖`p
≤ Cp · ‖θ(f)‖`p

.
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µξ

ξµ(t)

xµ

(t)µx

2− j

2− j/2

Curvelets are nearly invariant through a smooth change of coordinates
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Curvelets and Curved Singularities

• f smooth except along a C2 curve

• fn, n-term approximation obtained by naive thresholding

‖f − fn‖2
L2

≤ C · (logn)3 · n−2

• Why?

1. True for a straight edge

2. Deformation preserves
sparsity

• Optimal

φ

arbitrary singularity straight singularity
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Curvelets and Hyperbolic Differential Equations
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Representation of Evolution Operators

• Wave Equation

∂2
t u = c2(x)∆u, x ∈ R2,R3, ...

• Evolution operator S(t;x, y) is dense!

• Modern viewpoint

– Basis ϕn of L2.

– Representation of S: A(n, n′) = 〈ϕn, Sϕn′〉

u0
S−−−→ u = Su0

F

y yF

θ(u0) −−−→
A

θ(u)

, θ(u) = Sθ(u0)

• Find a representation in which S is sparse
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Domain of
     Dependence

(x,t)

t

Range of Influence

x0

The solution operator S is a ‘dense’ integral.
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Potential for Sparsity

If the matrix A is sparse, potential for

• fast multiplication

• fast inversion

Example: convolutions and Fourier transforms
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Current Multiscale Thinking

• Traditional ideas:

– Multigrids

– Wavelets

– Adaptive FEM’s

– etc.

• Traditional multiscale ideas are ill-adapted to wave problems:

1. they fail to sparsify oscillatory integrals like the solution operator

2. they fail to provide a sparse representation of oscillatory signals which
are the solutions of those equations.
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Peek at the Results

• Sparse representations of hyperbolic symmetric systems

• Connections with geometric optics

• Importance of parabolic scaling
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Symmetric Systems of Differential Equations

∂tu+

∑
i

Ai(x)∂iu+B(x)u = 0, u(0, x) = u0(x), x ∈ Rn,

u is m-dimensional and the Ai’s are symmetric

Examples

• Maxwell

• Acoustic waves

• Linear elasticity
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Example: Acoustic waves

System of hyperbolic equations: v = (u, p)

∂tu+ ∇(c(x)p) = 0

∂tp+ c(x)∇ · u = 0

• Dispersion matrix

∑
j

Aj(x)kj = c(x)


0 0 k1

0 0 k2

k1 k2 0


• Eigenvalues (λν): λ± = ±c(x), λ0 = 0.

• Eigenvectors (Rν)

R0(k) =

k⊥/|k|
0

 , R±(k) =
1

√
2

±k/|k|
1

 .
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Geometric Optics: Lax, 1957

• High-frequency wave-propagation approximation

v(x, t) =
∑

ν

eiωΦν(x,t)

(
a0ν(x, t) +

a1ν(x, t)

ω
+
a2ν(x, t)

ω2
+ . . .

)

• Plug into wave equation

– Eikonal equations

∂tΦν + λν(x,∇xΦ) = 0.

λν(x, k) are the eigenvalues of the dispersion matrix
∑

j Aj(x)kj

– And ’transport’ equations for amplitudes

Turns a linear equation into a nonlinear evolution equation!
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Hamiltonian Flows

• Dispersion matrix ∑
j

Aj(x)kj

• Eigenvalues λν(x, k), eigenvectors Rν(x, k)

• Hamiltonian flows (in general, m of them) in phase-space ẋ(t) = ∇kλν(x, k), x(0) = x0,

k̇(t) = −∇xλν(x, k), k(0) = k0.

• Eikonal equations from geometric optics

∂tΦν + λν(x,∇xΦ) = 0.

Φ is constant along the Hamiltonian flow Φ(t, x(t)) = Cste. Problem:
valid before caustics, i.e. before Φ becomes multi-valued (ray-crosses).
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Hyper-curvelets

• Frequency definition

Φ̂νµ(k) = Eνϕ̂µ(k).

• Hyper-curvelets build-up a (vector-valued) tight-frame, namely

‖u‖2
L2

=
∑
ν,µ

|[u,Φνµ]|2,

and

u =
∑
ν,µ

[u,Φνµ]Φνµ

• Other possibilities:

Φ̂νµ(k) = Rν(k)ϕ̂µ(k), Φµν(x) =
∫
Rν(x, k)ϕ̂µν(k)ei〈k,x〉 dk.
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Approximation

The action of the wave propagator on a curvelet is well- approximated by a
rigid motion.

• Initial data: Φνµ(x)

• Approximate solution

Φ̂νµ(t, k) = Rν(k)ϕ̂µ(t)(k)

where

ϕµ(t)(x) = ϕµ (Uµ(t)(x− xµ(t)) + xµ)

– Uµ(t) is a rotation

– xµ(t) is a translation
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xµ

θµ

Rays

θµ

'

'

xµ

θ µ'

θ µ

xµ

xµ'

(t)

(t)

(t)

(t)
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Main Result

Curvelet representation of the propagator S(t):

A(ν, µ; ν′, µ′) = 〈Φνµ, S(t)Φν′µ′〉

Theorem 2 (C. and Demanet) Suppose the coefficients of a general
hyperbolic system are smooth, i.e. C∞.

• The matrix is sparse. Suppose a is either a row or a column of A, and let
|a|(n) be the n-largest entry of the sequence |a|, then for each r > 0,
|a|(n) obeys

|a|(n) ≤ Crn
−r.

• The matrix is well-organized. There is a natural distance over the curvelet
indices such that for each M ,

|a(ν, µ; ν′, µ′)| ≤ CM,t(ν, ν′)
∑
ν′′

(1 + d(µ, µν′′(t))−M

The constant is growing at most like C1e
C2t, and for ν 6= ν′, C1 << 1.
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φ

φ

µ

(µ)t

Sketch of the curvelet representation of the wave propagator
A(ν′, µ′; ν, µ) = 〈Φνµ, S(t)Φν′µ′〉.
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Our Claim

Curvelets provide an optimally sparse representation of wave propagators.

• Fourier matrix is dense

• FEM matrix is dense

• Wavelet matrix is dense

Second-Order Scalar Equations

∂2
t u−

∑
i,j

aij(x)∂i∂ju = 0

Sparsity comes for free (in the scalar curvelet system)
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Why Does This Work?

“The purpose of calculations is insight, not numbers...”

(adapted from R. W. Hamming)

• Wave operator (constant coefficients)

∂2
t u = c2∆u, u(x, 0) = u0(x), ∂tu(x, 0) = u1(x).

• Fourier transform

û(t, k) =
∫
u(t, x)e−ik·x dx.

• Solution

û(t, k) = cos(c|k|t)û0(k) +
sin(c|k|t)

|k|
û1(k)

û(t, k) = e±ic|k|tû0(k) +
e±ic|k|t

|k|
û1(k)
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• Set t′ = ct

ei|k|t′
= eik1t′+δ(k)t′

, δ(k) = |k|−k1.

• Because of parabolic scaling

δ(k) = O(1)

• Frequency modulation is nearly linear

ei|k|t′
= ĥ(k) · eik1t′

.

ĥ smooth and non-oscillatory

• Space-side picture:

1. modulation corresponds to a displace-
ment of ±ct in the codirection.

2. multiplication by ĥ: gentle convolution

cos(|k| t') ~ cos(k  t')1

xµ

Displacement in the 
         codirection 
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µcos(|k| t) ~ cos(k t)

Displacement in the 
         codirection 

xµ

µ
k
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Warpings

• Variable coefficients: utt = c2(x)∆u.

• At small scales, the velocity field varies varies little over the support of a
curvelet.

• Model the effect of variable velocity field as a warping g: φµ(g(x)).

• Warpings do not distort the geometry of a curvelet.
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µξ

ξµ(t)

xµ

(t)µx

2− j

2− j/2
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Importance of Parabolic Scaling

• Consider arbitrary scaling (anisotropy incresases as α decreases)

width ∼ 2−j, length ∼ 2−jα, 0 ≤ α ≤ 1.

– ridgelets α = 0 (very anisotropic),

– curvelets α = 1/2 (parabolic anisotropy),

– wavelets α = 1 (roughly isotropic).

• For wave-like behavior, need

width ≤ length2

• For particle-like behavior, need

width ≥ length2

• For both (simultaneously), need

width ∼ length2

• Only working scaling: α = 1/2
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Examples I

    t = 0                                                                   t = T

2
-j
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Examples II
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Examples III

    t = 0                                                                   t = T

2
-j

2
-(1-α)j

2
-αj
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Architecture of the Argument

1. Decoupling into polarized components: Decompose the wavefield u(t, x)
into m one-way components fν(t, x)

u(t, x) =
m∑

ν=1

Rνfν(t, x),

Rν : pseudo-differential operator (independent of time), maps scalar fields
into m-dimensional vector fields.

S(t) =
m∑

ν=1

Rνe
−itΛνLν + negligible,

Lν : pseudo-differential operator, maps m-dimensional vector fields into
scalar fields.
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Curvelet Splitting

=

∼ ( )
∼− ( )
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S(t) ∼
∑

ν

Sν(t), Sν(t) = Rνe
−itΛνLν

2. Fourier Integral Operator parametrix. We then approximate for small times
t > 0 each e−itΛν , ν = 1, . . . ,m, by an oscillatory integral or Fourier
Integral Operator (FIO) Fν(t)

Fν(t)f(x) =
∫
eiΦν(t,x,k)σν(t, x, k)f̂(k) dk

Key issue: decoupling is crucial because this what makes it work for large
times (not an automatic consequence of Lax’s construction)

Sν(nt) = Sν(t)n

3. Sparsity of FIO’s. General FIO’s F (t) are sparse and well-structured when
represented in tight frames of (scalar) curvelets ϕµ—a result of
independent interest.
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Potential for Scientific Computing

• Transform this theoretical insight into effective algorithms

• Sources of inspiration

– Rokhlin

– Engquist & Osher

– Others
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Our Viewpoint

ut = e−P tu0

u0
e−P t

−−−→ ut

F

y yF

θ0 −−−→
A(t)

θt

For any t, A(t) is sparse

Background: Fast and accurate Digital Curvelet Transform is available (with
D. Donoho).
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Preliminary Work

• Grid size N

• Accuracy ε

• Complexity

O(N1+δ · ε−δ), any δ > 0,

• Conjecture

O(N logN · ε−δ)

• Arbitrary initial data

• Works in any dimension

• General procedure
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Propagating curvelets is not geometric optics!
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Summary

• New geometric multiscale ideas

• Key insight: geometry of Phase-Space

• New mathematical architecture

• Addresses new range of problems effectively

• Promising potential
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Numerical Experiments, I
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(a) Noisy Phantom
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(b) Curvelets
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(c) Curvelets and TV
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(d) Curvelets and TV: Residuals



10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(e) Wavelets
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(f) Curvelets
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(g) Curvelets and TV
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(l) Noisy
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(m) Curvelets & TV: Residuals
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(n) Noisy Scanline
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(o) True Scanline and Curvelets and TV Re-

construction
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(a) Noisy Scanline
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(b) Curvelets
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(c) Curvelets and TV
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(d) True Scanline and Curvelets and TV Re-
construction

Figure 10: Scanline Plots
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(p) Original
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(q) Noisy
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(r) Curvelets
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(s) Curvelets and TV
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Numerical Experiments, II: Work of Jean-Luc Starck (CEA)
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Curvelet
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a) Simulated image (Gaussians+lines)       b) Simulated image + noise                     c)  A trous algorithm            

     d)  Curvelet transform                            e) coaddition c+d                                            f) residual = e-b              



The separation task: decomposition of an image 
into a texture and a natural (piecewise smooth)
scene part.

= +

Separation of Texture from
Piecewise Smooth Content
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